Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 164
Filtrar
1.
Genes Chromosomes Cancer ; 63(4): e23239, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38656544

RESUMEN

Myxoid leiomyosarcoma (MLS) is a rare but well-documented tumor that often portends a poor prognosis compared to the conventional leiomyosarcoma. This rare sarcoma has been reported in the uterus, external female genitalia, soft tissue, and other locations. However, a definite rectal MLS has not been reported. Recently five cases of MLS were reported to harbor PLAG1 fusions (TRPS1::PLAG1, RAD51B::PLAG1, and TRIM13::PLAG1). In this report, we present a case of rectal MLS with a novel MIR143HG::PLAG1 fusion detected by RNA next-generation sequencing.


Asunto(s)
Proteínas de Unión al ADN , Leiomiosarcoma , Neoplasias del Recto , Humanos , Leiomiosarcoma/genética , Leiomiosarcoma/patología , Neoplasias del Recto/genética , Neoplasias del Recto/patología , Proteínas de Unión al ADN/genética , Femenino , MicroARNs/genética , Persona de Mediana Edad , Proteínas de Fusión Oncogénica/genética
2.
Artículo en Inglés | MEDLINE | ID: mdl-38423796

RESUMEN

BACKGROUND: Catecholamines and ß-adrenergic receptors (ß-ARs) play an important role in the regulation of cardiac tolerance to the impact of ischemia and reperfusion. This systematic review analyzed the molecular mechanisms of the cardioprotective activity of ß-AR ligands. METHODS: We performed an electronic search of topical articles using PubMed databases from 1966 to 2023. We cited original in vitro and in vivo studies and review articles that documented the cardioprotective properties of ß-AR agonists and antagonists. RESULTS: The infarct-reducing effect of ß-AR antagonists did not depend on a decrease in the heart rate. The target for ß-blockers is not only cardiomyocytes but also neutrophils. ß1-blockers (metoprolol, propranolol, timolol) and the selective ß2-AR agonist arformoterol have an infarct-reducing effect in coronary artery occlusion (CAO) in animals. Antagonists of ß1- and ß2-АR (metoprolol, propranolol, nadolol, carvedilol, bisoprolol, esmolol) are able to prevent reperfusion cardiac injury. All ß-AR ligands that reduced infarct size are the selective or nonselective ß1-blockers. It was hypothesized that ß1-AR blocking promotes an increase in cardiac tolerance to I/R. The activation of ß1-AR, ß2-AR, and ß3-AR can increase cardiac tolerance to I/R. The cardioprotective effect of ß-AR agonists is mediated via the activation of kinases and reactive oxygen species production. CONCLUSIONS: It is unclear why ß-blockers with the similar receptor selectivity have the infarct-sparing effect while other ß-blockers with the same selectivity do not affect infarct size. What is the molecular mechanism of the infarct-reducing effect of ß-blockers in reperfusion? Why did in early studies ß-blockers decrease the mortality rate in patients with acute myocardial infarction (AMI) and without reperfusion and in more recent studies ß-blockers had no effect on the mortality rate in patients with AMI and reperfusion? The creation of more effective ß-AR ligands depends on the answers to these questions.

3.
Fundam Clin Pharmacol ; 38(3): 489-501, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38311344

RESUMEN

BACKGROUND: The high mortality rate of patients with acute myocardial infarction (AMI) remains the most pressing issue of modern cardiology. Over the past 10 years, there has been no significant reduction in mortality among patients with AMI. It is quite obvious that there is an urgent need to develop fundamentally new drugs for the treatment of AMI. Angiotensin 1-7 has some promise in this regard. OBJECTIVE: The objective of this article is analysis of published data on the cardioprotective properties of angiotensin 1-7. METHODS: PubMed, Scopus, Science Direct, and Google Scholar were used to search articles for this study. RESULTS: Angiotensin 1-7 increases cardiac tolerance to ischemia/reperfusion and mitigates adverse remodeling of the heart. Angiotensin 1-7 can prevent not only ischemic but also reperfusion cardiac injury. The activation of the Mas receptor plays a key role in these effects of angiotensin 1-7. Angiotensin 1-7 alleviates Ca2+ overload of cardiomyocytes and reactive oxygen species production in ischemia/reperfusion (I/R) of the myocardium. It is possible that both effects are involved in angiotensin 1-7-triggered cardiac tolerance to I/R. Furthermore, angiotensin 1-7 inhibits apoptosis of cardiomyocytes and stimulates autophagy of cells. There is also indirect evidence suggesting that angiotensin 1-7 inhibits ferroptosis in cardiomyocytes. Moreover, angiotensin 1-7 possesses anti-inflammatory properties, possibly achieved through NF-kB activity inhibition. Phosphoinositide 3-kinase, Akt, and NO synthase are involved in the infarct-reducing effect of angiotensin 1-7. However, the specific end-effector of the cardioprotective impact of angiotensin 1-7 remains unknown. CONCLUSION: The molecular nature of the end-effector of the infarct-limiting effect of angiotensin 1-7 has not been elucidated. Perhaps, this end-effector is the sarcolemmal KATP channel or the mitochondrial KATP channel.


Asunto(s)
Angiotensina I , Daño por Reperfusión Miocárdica , Fragmentos de Péptidos , Transducción de Señal , Angiotensina I/farmacología , Fragmentos de Péptidos/farmacología , Humanos , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/fisiopatología , Animales , Transducción de Señal/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/metabolismo , Remodelación Ventricular/efectos de los fármacos , Cardiotónicos/farmacología , Cardiotónicos/uso terapéutico , Apoptosis/efectos de los fármacos
4.
Cell Mol Biol Lett ; 29(1): 22, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38308199

RESUMEN

INTRODUCTION: There is a high morbidity and mortality rate in mechanical trauma (MT)-induced hepatic injury. Currently, the molecular mechanisms underlying liver MT are largely unclear. Exploring the underlying mechanisms and developing safe and effective medicines to alleviate MT-induced hepatic injury is an urgent requirement. The aim of this study was to reveal the role of mitochondria-associated ER membranes (MAMs) in post-traumatic liver injury, and ascertain whether melatonin protects against MT-induced hepatic injury by regulating MAMs. METHODS: Hepatic mechanical injury was established in Sprague-Dawley rats and primary hepatocytes. A variety of experimental methods were employed to assess the effects of melatonin on hepatic injury, apoptosis, MAMs formation, mitochondrial function and signaling pathways. RESULTS: Significant increase of IP3R1 expression and MAMs formation were observed in MT-induced hepatic injury. Melatonin treatment at the dose of 30 mg/kg inhibited IP3R1-mediated MAMs and attenuated MT-induced liver injury in vivo. In vitro, primary hepatocytes cultured in 20% trauma serum (TS) for 12 h showed upregulated IP3R1 expression, increased MAMs formation and cell injury, which were suppressed by melatonin (100 µmol/L) treatment. Consequently, melatonin suppressed mitochondrial calcium overload, increased mitochondrial membrane potential and improved mitochondrial function under traumatic condition. Melatonin's inhibitory effects on MAMs formation and mitochondrial calcium overload were blunted when IP3R1 was overexpressed. Mechanistically, melatonin bound to its receptor (MR) and increased the expression of phosphorylated ERK1/2, which interacted with FoxO1 and inhibited the activation of FoxO1 that bound to the IP3R1 promoter to inhibit MAMs formation. CONCLUSION: Melatonin prevents the formation of MAMs via the MR-ERK1/2-FoxO1-IP3R1 pathway, thereby alleviating the development of MT-induced liver injury. Melatonin-modulated MAMs may be a promising therapeutic therapy for traumatic hepatic injury.


Asunto(s)
Enfermedad Hepática Crónica Inducida por Sustancias y Drogas , Melatonina , Animales , Ratas , Calcio/metabolismo , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/tratamiento farmacológico , Melatonina/farmacología , Melatonina/uso terapéutico , Ratas Sprague-Dawley
5.
Urology ; 184: 79-82, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38128834

RESUMEN

Metachronous oligometastatic clear cell renal cell carcinoma may take many years before becoming clinically apparent. Herein we report regional lymph node recurrence of clear cell renal cell carcinoma more than two decades following radical nephrectomy. Chromosomal microarray analysis demonstrated multiple chromosomal alterations, including 3pq deletion shared by the original and recurrent tumors, and 17p deletion containing the TP53 gene present only in the latter. Sequencing of 1550 genes revealed mutations of VHL in both the primary and metastasis and BAP1 only in the metastatic lesion. These findings genetically link the original and recurrent tumors and suggest that VHL, TP53, and BAP1 alterations played an evolutionary role in recurrence decades after initial resection.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/cirugía , Genómica , Nefrectomía , Neoplasias Renales/genética , Neoplasias Renales/cirugía , Evolución Molecular
6.
Mod Pathol ; 37(2): 100404, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38104891

RESUMEN

TFE3-rearranged renal cell carcinoma (rRCC) is a rare subtype of renal cell carcinomas belonging to the MiT family translocation RCC. To further elucidate the co-alterations that occur along with TFE3 fusions in rRCC, we characterized the genomic, transcriptional, and immune landscapes in comparison to clear cell (ccRCC) and papillary renal cell carcinoma (pRCC). Next-generation sequencing of RNA (whole transcriptome) and DNA (592-gene panel or whole exome) for rRCC (N = 20), pRCC (N = 20), and ccRCC samples (N = 392) was performed. Patients with rRCC were significantly younger and more frequently female (median 44.5 years, 75.0% female) as compared with patients with pRCC (68.5 years, 25.0% female; P < .05) and ccRCC (62.0 years, 27.8% female; P < .05). A total of 8 unique fusion partners were observed, including a novel fusion with SRRM2::TFE3 in 2 patients. ccRCC exhibited significantly higher mutation rates of VHL (0% rRCC, 0% pRCC, 78.7% ccRCC; P < .05) and PBMR1 (0% rRCC, 5.0% pRCC, 49.4% ccRCC; P < .05). The genomic landscapes of rRCC were sparse with no mutations occurring with a prevalence higher than 10% other than pTERT (18.2% rRCC, 0% pRCC, 9.2% ccRCC). rRCC were associated with significantly less M1 macrophages (0.8%) as compared with pRCC (1.4%) and ccRCC (2.7%) (P < .05), suggesting a cold tumor-immune microenvironment. However, rRCC were more commonly PD-L1+ (rRCC 50%, pRCC 19.0%, ccRCC 12.2%; P < .05). Gene set enrichment analysis showed that rRCC are enriched in genes related to oxidative phosphorylation when compared with both ccRCC and pRCC. Despite having a colder tumor-immune microenvironment than pRCC and ccRCC, increased PDL1+ rates in rRCC suggest a potential benefit from immune checkpoint inhibitor therapy.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Femenino , Masculino , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Neoplasias Renales/genética , Neoplasias Renales/patología , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Microambiente Tumoral
7.
Vasc Health Risk Manag ; 19: 673-688, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37881333

RESUMEN

Introduction: Pulmonary arterial hypertension (PAH) is a life-threatening disease characterized by a sustained rise in mean pulmonary artery pressure. Pulmonary vascular remodeling serves an important role in PAH. Identifying a key driver gene to regulate vascular remodeling of the pulmonary microvasculature is critical for PAH management. Methods: Differentially expressed genes were identified using the Gene Expression Omnibus (GEO) GSE117261, GSE48149, GSE113439, GSE53408 and GSE16947 datasets. A co-expression network was constructed using weighted gene co-expression network analysis. Novel and key signatures of PAH were screened using four algorithms, including weighted gene co-expression network analysis, GEO2R analysis, support vector machines recursive feature elimination and robust rank aggregation rank analysis. Regulator of G-protein signaling 5 (RGS5), a pro-apoptotic/anti-proliferative protein, which regulate arterial tone and blood pressure in vascular smooth muscle cells. The expression of RGS5 was determined using reverse transcription-quantitative PCR (RT-qPCR) in PAH and normal mice. The location of RGS5 and pericytes was detected using immunofluorescence. Results: Compared with that in the normal group, RGS5 expression was upregulated in the PAH group based on GEO and RT-qPCR analyses. RGS5 expression in single cells was enriched in pericytes in single-cell RNA sequencing analysis. RGS5 co-localization with pericytes was detected in the pulmonary microvasculature of PAH. Conclusion: RGS5 regulates vascular remodeling of the pulmonary microvasculature and the occurrence of PAH through pericytes, which has provided novel ideas and strategies regarding the occurrence and innovative treatment of PAH.


Asunto(s)
Hipertensión Arterial Pulmonar , Proteínas RGS , Ratones , Humanos , Animales , Hipertensión Arterial Pulmonar/genética , Hipertensión Arterial Pulmonar/metabolismo , Remodelación Vascular , Pericitos/metabolismo , Músculo Liso Vascular , Hipertensión Pulmonar Primaria Familiar , Biomarcadores , Arteria Pulmonar/metabolismo , Proliferación Celular , Proteínas RGS/genética , Proteínas RGS/metabolismo
8.
Artículo en Inglés | MEDLINE | ID: mdl-37730436

RESUMEN

Diffuse large B-cell lymphoma (DLBCL) is a heterogenous group of lymphoid malignancies. Based on gene expression profiling, it has been subdivided into germinal center (GC)-derived and activated B-cell (ABC) types. Advances in molecular methodologies have further refined the subclassification of DLBCL, based on recurrent genetic abnormalities. Here, we describe a distinct case of DLBCL that presented in leukemic form. DNA sequencing targeting 275 genes revealed pathogenically relevant mutations of CD79B, MyD88, TP53, TBL1XR1, and PIM1 genes, indicating that this lymphoma would be best classified as MCD/C5 DLBCL, an ABC subtype. Despite an initial good clinical response to BTK inhibitor ibrutinib, anti-CD20 antibody rituxan, alkylating agent bendamustine, and hematopoietic stem-cell transplant, the lymphoma relapsed, accompanied by morphologic and molecular evidence of disease progression. Specifically, the recurrent tumor developed loss of TP53 heterozygosity (LOH) and additional chromosomal changes central to ABC DLBCL pathogenesis, such as PRDM1 loss. Acquired resistance to ibrutinib and rituxan was indicated by the emergence of BTK and FOXO1 mutations, respectively, as well as apparent activation of alternative cell-activation pathways, through copy-number alterations (CNAs), detected by high-resolution chromosomal microarrays. In vitro, studies of relapsed lymphoma cells confirmed resistance to standard BTK inhibitors but sensitivity to vecabrutinib, a noncovalent inhibitor active against both wild-type as well as mutated BTK. In summary, we provide in-depth molecular characterization of a de novo leukemic DLBCL and discuss mechanisms that may have contributed to the lymphoma establishment, progression, and development of drug resistance.


Asunto(s)
Compuestos de Anilina , Linfoma de Células B Grandes Difuso , Recurrencia Local de Neoplasia , Piperidinas , Humanos , Rituximab , Genómica , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/metabolismo , Linfoma de Células B Grandes Difuso/patología
9.
Leuk Res Rep ; 20: 100387, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37701905

RESUMEN

We describe genomic findings in an AML case with isochromosome 7p, i(7)(p10), in which SNP array analysis uncovered an additional 7.07-Mb 20q deletion not detected by karyotyping. Several AML cases with i(7)(p10) as an isolated cytogenetic finding have been previously reported. Based on consequent loss of 7q, we propose that AML with i(7)(p10) represents a distinct entity belonging in the WHO group -7/7q-, which represents one of the genetic abnormalities defining AML, myelodysplasia-related. Additionally, the focal del(20q) identified here adds support for a specific common region of deletion in 20q in myeloid malignancies, implicating a small number of candidate genes.

10.
J Biomed Res ; 37(4): 268-280, 2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37503710

RESUMEN

The role of reactive oxygen species (ROS) in ischemic and reperfusion (I/R) injury of the heart has been discussed for more than 40 years. It has been demonstrated that reperfusion triggers a multiple increase in free radical generation in the isolated heart. Antioxidants were found to have the ability to mitigate I/R injury of the heart. However, it is unclear whether their cardioprotective effect truly depends on the decrease of ROS levels in myocardial tissues. Since high doses and high concentrations of antioxidants were experimentally used, it is highly likely that the cardioprotective effect of antioxidants depends on their interaction not only with free radicals but also with other molecules. It has been demonstrated that the antioxidant N-2-mercaptopropionyl glycine or NDPH oxidase knockout abolished the cardioprotective effect of ischemic preconditioning. Consequently, there is evidence that ROS protect the heart against the I/R injury.

11.
J Biomed Res ; 37(4): 281-302, 2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37503711

RESUMEN

The analysis of experimental data demonstrates that platelets and neutrophils are involved in the no-reflow phenomenon, also known as microvascular obstruction (MVO). However, studies performed in the isolated perfused hearts subjected to ischemia/reperfusion (I/R) do not suggest the involvement of microembolization and microthrombi in this phenomenon. The intracoronary administration of alteplase has been found to have no effect on the occurrence of MVO in patients with acute myocardial infarction. Consequently, the major events preceding the appearance of MVO in coronary arteries are independent of microthrombi, platelets, and neutrophils. Endothelial cells appear to be the target where ischemia can disrupt the endothelium-dependent vasodilation of coronary arteries. However, reperfusion triggers more pronounced damage, possibly mediated by pyroptosis. MVO and intra-myocardial hemorrhage contribute to the adverse post-infarction myocardial remodeling. Therefore, pharmacological agents used to treat MVO should prevent endothelial injury and induce relaxation of smooth muscles. Ischemic conditioning protocols have been shown to prevent MVO, with L-type Ca 2+ channel blockers appearing the most effective in treating MVO.

12.
Biochem Biophys Res Commun ; 665: 78-87, 2023 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-37149986

RESUMEN

The translocation of Drp1 from the cytosol to mitochondria leads to Drp1 activation and mitochondrial fission in myocardial ischemia/reperfusion (MI/R). However, the molecular mechanism underlying mitochondrial Drp1 translocation remains poorly understood. Mitochondrial Drp1 recruitment relies on 4 binding partners including MiD49, MiD51, Mff and Fis1. This study was to elucidate which one facilitate mitochondrial Drp1 translocation and its role in MI/R injury. MI/R was induced by ligating the left anterior descending coronary artery for 30 min and subsequent reperfusion for 3 h. Primary neonatal cardiomyocytes were subjected to hypoxia for 2 h and reoxygenation for 4 h. SiRNA or Adeno-associated virus (AAV) expressing shRNA was used to knock down the key binding partner in vitro or in vivo respectively. The expression of MiD51 rather than other binding partners (MiD49, Mff or Fis1) was increased after MI/R. MiD51 knockdown inhibited hypoxia/reoxygenation (H/R) or ischemia/reperfusion (I/R)-induced mitochondrial Drp1 translocation. SiRNA-induced knockdown of MiD51 suppressed mitochondrial oxidative stress, improved mitochondrial function and alleviate cellular injury in H/R cardiomyocytes. AAV-mediated knockdown of MiD51 reduced myocardial injury and improved cardiac function in the I/R hearts, while mitochondrial Drp1 translocation and cardiac function were not affected by MiD51 knockdown in the hearts without I/R. MiD51 is identified as the binding partner that promotes mitochondrial Drp1 translocation and contributes to MI/R injury. Inhibition of MiD51 may be a potential therapeutic target to alleviate MI/R injury.


Asunto(s)
Dinaminas , Isquemia Miocárdica , Humanos , Recién Nacido , Apoptosis , Dinaminas/metabolismo , Isquemia/metabolismo , Mitocondrias/metabolismo , Dinámicas Mitocondriales , Isquemia Miocárdica/metabolismo , Reperfusión , ARN Interferente Pequeño/metabolismo , Regulación hacia Arriba
13.
Fundam Clin Pharmacol ; 37(6): 1020-1049, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37218378

RESUMEN

BACKGROUND: The use of percutaneous coronary intervention (PCI) in patients with ST-segment elevation myocardial infarction (STEMI) is associated with a mortality rate of 5%-7%. It is clear that there is an urgent need to develop new drugs that can effectively prevent cardiac reperfusion injury. ATP-sensitive K+ (KATP ) channel openers (KCOs) can be classified as such drugs. RESULTS: KCOs prevent irreversible ischemia and reperfusion injury of the heart. KATP channel opening promotes inhibition of apoptosis, necroptosis, pyroptosis, and stimulation of autophagy. KCOs prevent the development of cardiac adverse remodeling and improve cardiac contractility in reperfusion. KCOs exhibit antiarrhythmic properties and prevent the appearance of the no-reflow phenomenon in animals with coronary artery occlusion and reperfusion. Diabetes mellitus and a cholesterol-enriched diet abolish the cardioprotective effect of KCOs. Nicorandil, a KCO, attenuates major adverse cardiovascular event and the no-reflow phenomenon, reduces infarct size, and decreases the incidence of ventricular arrhythmias in patients with acute myocardial infarction. CONCLUSION: The cardioprotective effect of KCOs is mediated by the opening of mitochondrial KATP (mitoKATP ) and sarcolemmal KATP (sarcKATP ) channels, triggered free radicals' production, and kinase activation.


Asunto(s)
Daño por Reperfusión Miocárdica , Fenómeno de no Reflujo , Intervención Coronaria Percutánea , Humanos , Animales , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/prevención & control , Apoptosis , Reperfusión , Adenosina Trifosfato , Canales KATP
14.
Biochim Biophys Acta Gen Subj ; 1867(2): 130281, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36410609

RESUMEN

BACKGROUND: Uncorrected obesity facilitates premature aging and cardiovascular anomalies. This study examined the interaction between obesity and aging on cardiac remodeling and contractile function. METHODS: Cardiac echocardiographic geometry, function, morphology, intracellular Ca2+ handling, oxidative stress (DHE fluorescence), STAT3 and stress signaling were evaluated in young (3-mo) and old (12- and 18-mo) lean and leptin deficient ob/ob obese mice. Cardiomyocytes from young and old lean and ob/ob mice were treated with leptin (1 nM) for 4 h in vitro prior to assessment of mechanical and biochemical properties. High fat diet (45% calorie from fat) and the leptin receptor mutant db/db obese mice at young and old age were evaluated for comparison. RESULTS: Our results displayed reduced survival in ob/ob mice. Obesity but less likely older age dampened echocardiographic, geometric, cardiomyocyte function and intracellular Ca2+ properties, elevated O2- and p47phox NADPH oxidase levels with a more pronounced geometric change at older age. Immunoblot analysis revealed elevated p47phox NADPH oxidase and dampened phosphorylation of STAT3, with a more pronounced response in old ob/ob mice, the effects were restored by leptin. Obesity and aging inhibited phosphorylation of Akt, eNOS, AMPK, and p38 while promoting phosphorylation of JNK and IκB. Leptin reconciled cardiomyocyte dysfunction, O2- yield, p47phox upregulation, STAT3 dephosphorylation and stress signaling in ob/ob mice although its action on stress signaling cascades were lost at old age. High fat diet-induced and db/db obesity displayed aging-associated cardiomyocyte anomalies reminiscent of ob/ob model albeit lost leptin response. CONCLUSIONS: Our data suggest disparate age-associated obesity response in cardiac remodeling and contractile dysfunction due to phosphorylation of Akt, eNOS and stress signaling-related oxidative stress.


Asunto(s)
Envejecimiento , Leptina , Miocardio , Obesidad , Animales , Ratones , Leptina/fisiología , Ratones Obesos , NADPH Oxidasas , Proteínas Proto-Oncogénicas c-akt , Remodelación Ventricular , Miocardio/patología , Estrés Oxidativo , Estrés Fisiológico
15.
Cytopathology ; 34(1): 28-34, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36062384

RESUMEN

OBJECTIVE: Targeted therapy is an important part of the treatment of lung adenocarcinoma. Tests for EGFR mutation, ALK, ROS1, RET and NTRK gene fusions are needed to make a treatment decision. These gene fusions are traditionally detected by fluorescence in situ hybridisation (FISH) or immunohistochemistry. In this study, we investigated whether gene fusions in pulmonary adenocarcinoma could be accurately detected by RNA next-generation sequencing (RNA-NGS) and whether cytology cell blocks could be used effectively for this test. METHODS: Archived cytological specimens of lung adenocarcinoma submitted for RNA sequencing between 2019 and 2022 at Fox Chase Cancer Center were retrospectively retrieved. Hybrid capture-based targeted RNA next generation sequencing was used, which covers 507 fusion genes, including ALK, ROS1, RET and NTRKs, irrespective of their partner genes. DNA NGS, FISH and chromosomal microarray analysis were used to confirm the results of the RNA-NGS. RESULTS: A total of 129 lung adenocarcinoma cytology specimens were submitted for molecular testing. Eight of 129 (6.2%) cases were excluded from RNA sequencing as their cell blocks contained inadequate numbers of tumour cells. One case (0.8%) failed to yield adequate RNA. The overall success rate was 93% (120/129). Ten of 120 (8.3%) cytology cases were positive for gene fusions, including 7 ALK, 2 ROS1 fusion genes, and 1 RET fusion gene. Twenty-two cell block cases were also tested for ALK fusion genes using FISH. However, 11 of 22 (50%) failed the testing due to inadequate material. CONCLUSIONS: Cytology cell blocks can be used as the main source of material for molecular testing for lung cancer. Detection of gene fusions by RNA-based NGS on cell blocks is convenient and reliable in daily practice.


Asunto(s)
Adenocarcinoma del Pulmón , Adenocarcinoma , Neoplasias Pulmonares , Humanos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Quinasa de Linfoma Anaplásico/genética , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas Receptoras/genética , ARN , Estudios Retrospectivos , Adenocarcinoma/diagnóstico , Adenocarcinoma/genética , Adenocarcinoma/patología , Proteínas Proto-Oncogénicas/genética , Adenocarcinoma del Pulmón/diagnóstico , Adenocarcinoma del Pulmón/genética , Fusión Génica , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Proteínas de Fusión Oncogénica/genética
16.
Int J Mol Sci ; 25(1)2023 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-38203475

RESUMEN

Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare hematologic malignancy with an aggressive clinical course and poor prognosis. The genetic abnormalities in BPDCN are heterogeneous; therefore, its molecular pathogenesis and the prognostic importance of genomic alterations associated with the disease are not well defined. Here we report a case of BPDCN with a novel AFF4::IRF1 fusion predicted to lead to a loss-of-function of the IRF1 tumor suppressor, somatic mutations of ASXL1, TET2, and MYD88, as well as multiple intrachromosomal deletions. The patient showed resistance to Tagraxofusp and Venetoclax, and he died about 16 months after diagnosis. Considering the predicted effect of the AFF4::IRF1 fusion on IRF1's antitumor effects and immune regulation, and the possibility of its relevance to the aggressive course observed in this case, we propose further evaluation of the clinical significance of this fusion in BPDCN in future cooperative group studies and the consideration of therapeutic strategies aimed at restoring IRF1-dependent antineoplastic effects in such cases.


Asunto(s)
Neoplasias Hematológicas , Trastornos Mieloproliferativos , Masculino , Humanos , Genómica , Proteínas Adaptadoras Transductoras de Señales , Muerte , Neoplasias Hematológicas/tratamiento farmacológico , Neoplasias Hematológicas/genética , Factores de Elongación Transcripcional , Factor 1 Regulador del Interferón/genética
17.
J Inflamm Res ; 15: 6729-6743, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36536645

RESUMEN

Background: Tumor growth depends on tumor cells and the tumor microenvironment, which are regulated by inflammation and immune responses. However, the roles of inflammation and immune status in hepatocellular carcinoma (HCC) remain unclear. The aim of this study was to evaluate the prognostic value of an inflammatory response- related gene signature associated with immune status, which may provide insight into new treatment options for HCC patients. Materials and Methods: Differentially expressed genes associated with inflammation were obtained from The Cancer Genome Atlas (TCGA), the Gene Expression Omnibus, and the Molecular Signatures Database. An inflammation-associated prognostic gene signature was constructed and validated using TCGA and the International Cancer Genome Consortium datasets, respectively, using LASSO Cox regression analysis. Log-rank was performed to compare the overall survival of low- and high-risk score cohorts. Immune cell infiltration and immune-related functions were analyzed using single-sample gene enrichment analysis. The structures of the drugs identified by the prognostic model were predicted using PubChem. The drugs sensitivity of bleomycin, simvastatin and zoledronate detected by CCK8 colorimetric assay. The mRNA levels of 7 genes in HCC after drug treatment analyzed via qRT-PCR. Results: Inflammation-associated genes, including ITGA5, MEP1A, P2RX4, RIPK2, SLC7A1 and SRI, were identified and found to be associated with the prognosis of HCC. We further found that the high-risk patients experienced poor prognosis, which was observed to be an independent and significant risk factor for prognosis. Moreover, we observed elevated expression levels in multiple immune cell types and immune function. Lastly, we validated that bleomycin, simvastatin and zoledronate could regulate these genes in HCC. Conclusion: The inflammatory-response-associated gene signature could predict the prognosis and the immunological status of HCC patients. Additionally, bleomycin, simvastatin and zoledronate may represent potential drug candidates that could inhibit these genes. This may constitute a new approach for the treatment of HCC.

18.
J Biomed Res ; 36(6): 375-389, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-36320147

RESUMEN

Acute myocardial infarction (AMI) is one of the main reasons of cardiovascular disease-related death. The introduction of percutaneous coronary intervention to clinical practice dramatically decreased the mortality rate in AMI. Adverse cardiac remodeling is a serious problem in cardiology. An increase in the effectiveness of AMI treatment and prevention of adverse cardiac remodeling is difficult to achieve without understanding the mechanisms of reperfusion cardiac injury and cardiac remodeling. Inhibition of pyroptosis prevents the development of postinfarction and pressure overload-induced cardiac remodeling, and mitigates cardiomyopathy induced by diabetes and metabolic syndrome. Therefore, it is reasonable to hypothesize that the pyroptosis inhibitors may find a role in clinical practice for treatment of AMI and prevention of cardiac remodeling, diabetes and metabolic syndrome-triggered cardiomyopathy. It was demonstrated that pyroptosis interacts closely with apoptosis and autophagy. Pyroptosis could be inhibited by nucleotide-binding oligomerization domain-like receptor with a pyrin domain 3 inhibitors, caspase-1 inhibitors, microRNA, angiotensin-converting enzyme inhibitors, angiotensin Ⅱ receptor blockers, and traditional Chinese herbal medicines.

20.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 38(4): 289-294, 2022 Apr.
Artículo en Chino | MEDLINE | ID: mdl-35583056

RESUMEN

Objective This study is aimed to investigate the effect of paeonol on inflammation of BV2 microglia induced by lipopolysaccharide (LPS), and the underlying mechanism. Methods Mouse BV2 microglia was cultured in vitro. BV2 microglia was pretreated with paeonol of different concentration for 24 hours, then stimulated by LPS for 12 hours. Cell viability was detected by CCK-8 assay. Morphological changes of microglia were monitored by microscopy. The mRNA expression of TNF-α, IL-1ß, IL-12 and IL-6 by BV2 microglia was measured by real time quantitative-PCR. The protein expression of NF-κB p65 and phosphorylated NF-κB p65 (p-NF-κB p65) was determined by Western blot analysis. Results Paeonol treatment improved cell viability, and inhibited over-activation of BV2 microglia challenged by LPS. Paeonol treatment concentration-dependently suppressed LPS induced mRNA expression of inflammatory cytokines including TNF-α, IL-1ß, IL-6, and IL-12 by BV2 microglia. Phosphorylation of NF-κB p65, but not protein level of NF-κB p65, was suppressed by paeonol treatment in a concentration-dependent manner. Conclusion Paeonol inhibits LPS induced phosphorylation of NF-κB p65 and transcription of downstream proinflammatory cytokines in BV2 microglia.


Asunto(s)
Lipopolisacáridos , Microglía , Acetofenonas , Animales , Citocinas/metabolismo , Interleucina-12/metabolismo , Interleucina-6/metabolismo , Lipopolisacáridos/metabolismo , Lipopolisacáridos/farmacología , Ratones , FN-kappa B/metabolismo , Fosforilación , ARN Mensajero/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...